Shear Stress & Torsional Stiffness Analysis of a Round Tube

Madhuka Dilshan

For questions, please fill out contact form

Model Description

- Shear Stress and Torsional Stiffness
 Analysis of a Round Tube is based on example question 2 documented in page 177 of the following book:
 - AIRFRAME STRESS ANALYSIS AND SIZING BY MICHAEL C.Y. NIU.pdf Accessed: Aug. 31, 2023. [Online]. Available: https://soaneemrana.org/onewebmedia/AIRFRAME%20STRESS%20ANALYSIS%20AND%20SIZING%20BY%20MICHAEL%20C.Y.%20NIU.pdf
- Aluminum is selected as the material for the tube.

Model Description

- a. Inner radius 121.875 *mm*
- b. Outer radius 128.125 *mm*
- c. Length (*L*) 1000 mm
- d. Average radius (R) 125 mm
- e. Thickness (t) 6.25 mm

Model Description

- One end is constrained and Torque = 1Nm is added to the other end.
- 'Datum point set' is added to the free end as a reference to measure the rotation under the Torque.

Model Parameters

Entity	Type
Solver	Altair SimSolid
Version	2022.2.1
CPU	Intel(R) Core(TM) i7- 9750H CPU @ 2.60GHz

FEA Entities	Туре
Analysis Type	Structural linear
Unit System	kg,mm,s

Analysis Assumptions and Limitations

For the calculations Modulus of Rigidity of Aluminum is assumed as follows,

Modulus of Rigidity of Aluminium $(G) = 2.6 * 10^6 Pa$

Analysis Setup

Hand Calculations

• Torsional Shear Stress =
$$\frac{T}{2\pi R^2 t} = \frac{1}{2\pi (0.125)^2 (0.00625)} = 1629.7466 Pa$$

• Torsional Stiffness =
$$\frac{TL}{(2\pi R^3 t)G} = \frac{1*1}{2\pi (0.125)^3 (0.00625)(2.6*10^6)} = 5.01*10^{-7} rad$$

Analysis Results - Shear Stress

Analysis Results - Torsional Stiffness

Total Rotation Angle = $2.7769 * 10^{-5}$ degrees = $\frac{2\pi}{360} * 2.7769 * 10^{-5}$ rad = $4.85 * 10^{-7}$ rad

Analysis Results - Shear Stress

 Maximum Torsional Shear Stress occur due to the Torque at the free end of tube,

Based on hand calculations -1629.7466 PaFrom the simulation -1800.2 Pa

• Error percentage =
$$\frac{(1800-1629.7466)}{1629.7466} * 100\%$$

= 10.45 %

Analysis Results - Torsional Stiffness

• Torsional Stiffness occur due to the Torque at the free end of tube, Based on hand calculations $-5.01*10^{-7}$ rad From the simulation $-4.85*10^{-7}$ rad

• Error percentage =
$$\frac{(5.01-4.85)}{5.01} * 100\%$$

= 3.19 %

Conclusions

- Shear Stress and Torsional Analysis of a Round Tube is conducted using Altair SIMSOLID based on the book listed in slide 2.
- Results of the simulation correlate well to the expected hand calculation value.

