Stress Analysis of a Pressurized Pipe with an End Cap

Madhuka Dilshan

For questions, please fill out contact form

Model Description

- Stress Analysis of a pressurized pipe with and end cup based on example question 2 documented in page 122 of the following book:
 - J. Souza, Roark's Formulas For Stress And Strain-.pdf.
 Accessed: Nov. 06, 2022. [Online]. Available:
 https://www.academia.edu/37205286/Roarks Formulas For Stress And Strain pdf
- PVC is selected as the material for the pipe.

Model Description

- a. Inner radius 0.9695 in
- b. Outer radius 1.1875 in
- c. Cross sectional area of bore 2.955 in^2
- d. Cross sectional area of pipe wall -
- $1.475 in^2$
- e. Polar moment of inertial $1.735 in^4$

Model Description

- The case study (Pipe with end cap) is simplified as follows,
 - The end cap is replaced with a twisting moment (at end edge of pipe) which is caused by the end cap as mentioned in the example question.

Model Parameters

Entity	Type
Solver	Altair SimSolid
Version	2022.2.1
CPU	Intel(R) Core(TM) i7- 9750H CPU @ 2.60GHz

FEA Entities	Туре
Analysis Type	Structural linear
Unit System	lb, in, s

Analysis Assumptions and Limitations

• For the simulation, an acceleration has been calculated to produce the twisting moment of **5000 in-lb** and assumed resultant effect from acceleration is equal to the effect of the moment,

Twisting Moment = 5000 lb in

Polar Moment of inertia = 1.735 in^4

Using $Torque = I\alpha$,

$$\alpha = \frac{5000}{1.735}$$

 $\alpha = 2881.84 \, rads^{-2}$

Analysis Setup

Hand Calculations

For a point on inner surface,

$$\begin{split} \sigma_x &= \frac{pA_b}{A_w} = \frac{(2000)(2.955)}{1.475} = 4007 \text{ lb/in}^2 \\ \sigma_y &= p \frac{r_o^2 + r_i^2}{r_o^2 - r_i^2} = 2000 \frac{1.1875^2 + 0.9695^2}{1.1875^2 - 0.9695^2} = 9996 \text{ lb/in}^2 \\ \sigma_z &= -p = -2000 \text{ lb/in}^2 \\ \tau_{xy} &= \frac{Tr_i}{J} = \frac{(5000)(0.9695)}{1.735} = 2794 \text{ lb/in}^2 \\ \tau_{yz} &= \tau_{zx} = 0 \end{split}$$

$$\begin{vmatrix} (\sigma_x - \sigma_p) & \tau_{xy} & \tau_{zx} \\ \tau_{xy} & (\sigma_y - \sigma_p) & \tau_{yz} \\ \tau_{zx} & \tau_{yz} & (\sigma_z - \sigma_p) \end{vmatrix} = 0$$

$$\sigma_p^3 - (4007 + 9996 - 2000)\sigma_p^2 + [(4007)(9996) + (9996)(-2000) \\ + (-2000)(4007) - 2794^2 - 0 - 0]\sigma_p - [(4007)(9996)(-2000) + 2(2794)(0)(0) \\ - (4007)(0^2) - (9996)(0^2) - (-2000)(2794^2)] = 0$$
 or
$$\sigma_p^3 - 12.003(10^3)\sigma_p^2 + 4.2415(10^6)\sigma_p + 64.495(10^9) = 0$$

- Solving this give $\sigma_p = 11,100, 2906, \text{ and } -2000 \text{ lb/in}^2$
- The maximum shear stress, $0.5[11,100 (-2000)] = 6550 \, lb/in^2$
- Detailed Hand calculations is mentioned in following book pages 122-124,

Analysis Results - Stresses

Analysis Results

 Maximum Shear Stress occur due to the twisting moment from the tightening end cap,

Based on hand calculations – $6550 lb/in^2$

From the simulation - $6584 lb/in^2$

• Error percentage =
$$\frac{(6584-6550)}{6550} * 100\%$$

= 0.5191 %

Conclusions

- Stress analysis of a Pressurized Pipe With An End Cap conducted using Altair SIMSOLID based on the book listed in slide 2.
- Results of the simulation correlate well to the expected hand calculation value.

