Modal Analysis of a Cantilever beam

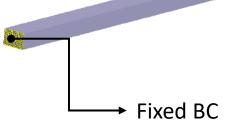
For questions fill out contact form

Model Description

- Modal analysis of a Cantilever beam was conducted to evaluate mode shapes and frequencies:
- Modal frequencies are compared to hand calculations.
- Note: This analysis does not model material failure.

Model Parameters

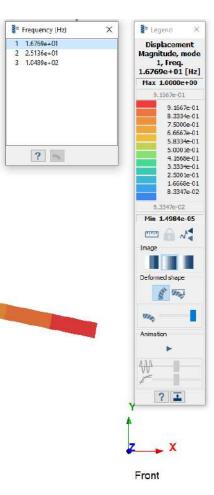
Entity	Туре
Solver	Altair SIMSOLID
Version	2022.2.1
CPU	Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz


FEA Entities	Туре
Analysis Type	Structural non-linear
Unit System	kg, m, s

Analysis Setup

Steel Beam

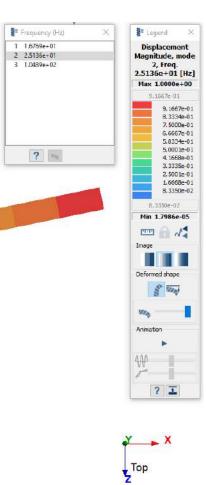
- Young's modulus 206 GPa
- Density 7800 kg/m3
- Rectangular cross section


Free End

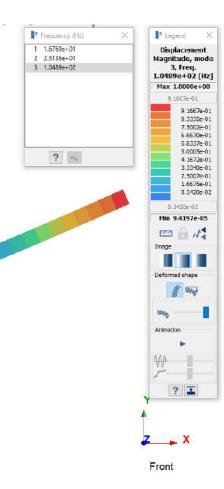
Analysis Assumptions and Limitations

• Mode Shape function calculations are omitted.

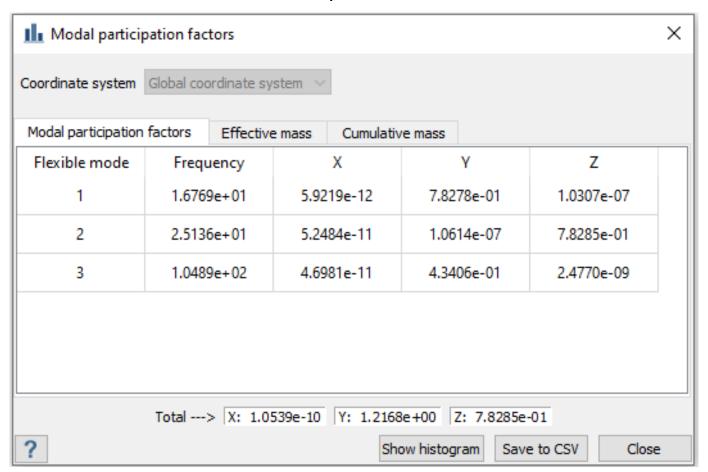
1st Mode Shape



Design study 1 | Modal 1


2nd Mode Shape

Design study 1 | Modal 1


3rd Mode Shape

Design study 1 | Modal 1

Frequencies

Hand Calculations

1st Mode Shape

$$f = \frac{1.875^2}{2\pi} \sqrt{\frac{EI}{\rho A}} = \frac{1.875^2}{2\pi} \sqrt{\frac{(206 \times 10^9) \times (\frac{1}{12} \times 0.03 \times 0.02^3)}{7800 \times (0.02 \times 0.03)}} = 16.6 \, Hz$$

2nd Mode Shape

$$f = \frac{1.875^2}{2\pi} \sqrt{\frac{EI}{\rho A}} = \frac{1.875^2}{2\pi} \sqrt{\frac{(206 \times 10^9) \times (\frac{1}{12} \times 0.02 \times 0.03^3)}{7800 \times (0.02 \times 0.03)}} = 24.9 \text{ Hz}$$

• 3rd Mode Shape

$$f = \frac{4.6941^2}{2\pi} \sqrt{\frac{EI}{\rho A}} = \frac{4.6941^2}{2\pi} \sqrt{\frac{(206 \times 10^9) \times (\frac{1}{12} \times 0.03 \times 0.02^3)}{7800 \times (0.02 \times 0.03)}} = 104.1 \, Hz$$

Comparison of Results

Hand Calculations (Hz)	Simulations (Hz)	Error Percentage (%)
16.6	16.8	1.2
24.9	25.1	0.8
104.1	104.9	0.76

Conclusions

- Modal analysis of a cantilever beam was conducted using Altair SIMSOLID.
- The simulation shows good correlation in mode frequencies when compared to hand calculations.
- This model provides a good starting point for modal analysis FEA and can be further utilized to model damage and failure.

