Bending of a beam with a shoulder and fillet

Sanka Dasanayaka

For questions, please fill out contact form

Model Description

- Bending analysis of a beam with a shoulder and fillet is based on example question documented in page 775 of the following book:
 - J. Souza, Roark's Formulas For Stress And Strain-.pdf.
 [Online]. Available:
 https://www.academia.edu/37205286/Roarks Formulas F
 or Stress And Strain pdf

Model Description

Young's modulus - 200 GPa

Density - 7850 kg/m3

Poison's ratio - 0.33

Model Parameters

Entity	Type
Solver	Altair SimSoild
Version	2022.2.1
CPU	Intel(R) Core(TM) i7- 9750H CPU @ 2.60GHz

FEA Entities	Type
Analysis Type	Structural linear
Unit System	kg, m, s

Analysis Setup

Immovable

support

Analysis Assumptions and Limitations

- Length of the beam was not mentioned in the question and is thus assumed as 15mm.
- Material of the beam was also not mentioned in the question and is thus assumed as steel.

$$D = 50 \text{ mm}, h = 9 \text{ mm}, r = 3 \text{ mm}$$

$$\frac{h}{r} = 3$$
Hence,
$$C_1 = 0.927 + 1.149 \sqrt{\frac{h}{r}} - 0.086 \frac{h}{r} = 2.634$$

$$C_2 = 0.011 - 3.029 \sqrt{\frac{h}{r}} + 0.948 \frac{h}{r} = -2.902$$

$$C_2 = -0.304 - 3.979 \sqrt{\frac{h}{r}} - 1.737 \frac{h}{r} = 1.587$$

$$C_2 = 0.366 - 2.098 \sqrt{\frac{h}{r}} + 0.875 \frac{h}{r} = -0.3182$$

$$C_2 = 0.366 - 2.098 \sqrt{\frac{h}{r}} + 0.875 \frac{h}{r} = -0.3182$$

Figure - from above book

with,
$$\frac{2h}{D} = 0.36$$

$$K_t = C_1 + C_2 \left(\frac{2h}{D}\right) + C_3 \left(\frac{2h}{D}\right)^2 + C_4 \left(\frac{2h}{D}\right)^3 = 1.780$$

Bending moment = 500 Nm

Stress at the minor radius
$$\sigma_{nom} = \frac{32M}{\pi (D-2h)^3} = 155.4 \, MPa$$

If is in the elastic range, then

$$\sigma_{max} = K_t \sigma_{nom} = 276.6 MPa$$

This value exceeds elastic limit of 200 MPa.

$$\varepsilon_{nom} = \frac{\sigma_{nom}}{E} = 77.7 \times 10^{-5}$$

Thus, $K_t^2 \sigma_{nom} \varepsilon_{nom} = 0.3826 MPa$

From the tabulated data,

σ (MPa)	0	50	100	150	200	235	252	263	267
$\sigma \varepsilon \text{ (MPa)}$	0	0.0125	0.05	0.1125	0.2	0.29375	0.378	0.46025	0.534

Using interpolation,

$$\frac{\dot{\sigma}_{max} - 252}{0.3826 - 0.378} = \frac{263 - 252}{0.46025 - 0.378}$$

Therefore,

This yields $\sigma_{max} = 252.6 MPa$

Analysis Results

Units - MPa

Analysis Results

Maximum stress,

Based on hand calculations - 252.6 MPa

From the simulation - 250.99 MPa

Conclusions

- Bending analysis of beam with shoulder and fillet is conducted using Altair SimSolid based on the book listed in slide 2.
- Results of the simulation correlate well to the expected hand calculation value.

