A Study of Warping of Noncircular Shafts in Torsion

Sanka Dasanayaka

For questions fill out contact form

Model Description

- Warping and Torsion analysis based on experiments documented in the following paper:
 - Chattopadhyay, "A Study of Warping of Non-circular Shafts in Torsion." Accessed: Sep. 06, 2022. [Online]. Available: <u>https://peer.asee.org/19129.pdf</u>
- As mentioned in the paper Aluminum 6061 has been used.

Model Description cont.

Circular Bar

- Diameter 6.35 mm (0.25 in)
- Length 457.2 mm (18 in)
- Length of the fixed end 8 mm
- Distance from the end where the torque is applied to the cross section which the AOT is measured – 16 mm

Square Bar

- Length of a side 6.35 mm (0.25 in)
- Length 457.2 mm (18 in)
- Length of the fixed end 8 mm
- Distance from the end where the torque is applied to the cross section which the AOT is measured – 16 mm

Model Parameters

Entity	Туре	FEA Entities	Туре
Solver	Altair Radioss	Analysis Type	Dynamic Explicit
Version	2021.2.1	Unit System	Kg, mm, ms
Processors	2	Element Type	HEXA8N (Bar)
Threads	2	Element Type	RBODY (Rigid Body)
CPU	Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz 10 sec	Material Type	M1_ELAST (Bar)
		Property Type	P14_SOLID (Bar)
Total run time			

2/21/2023

Analysis Setup

Model Info: C:/ALGO_FEA_MODELS/0000_FREE_MODELS/Torsion/Square Bar/Run2_SD/Final model.hm*

Analysis Assumptions and Limitations

- Young's modulus was calculated using the results given in the paper to get accurate results.
- Length of the fixed part of the bar is not provided in the paper and is thus assumed.

Analysis Results – Circular Bar

Analysis Results – Square Bar

Conclusions

- Torsion and warping analysis conducted using Altair Radioss based on the paper listed in slide 2.
- Results of the simulation are correlate well to the test results given in the paper.
- This model provides a good start to torsion and warping analysis of circular and square bars.

