Deflection of a beam

Sanka Dasanayaka

For questions, please fill out contact form

Model Description

- Deflection analysis based on example question 2 documented in page 133 of the following book:
 - J. Souza, Roark's Formulas For Stress And Strain-.pdf. Accessed: Nov. 06, 2022. [Online]. Available: <u>https://www.academia.edu/37205286/Roarks_Formulas_Formulas_Formulas_Formulas_Formulas_Formulas_Formulas_Formulas_Formulas_Formulas_Formulas_Formulas_Formulas_Formulas_Formulas_Formulas_Formulas_For_Stress_And_Strain_pdf
 </u>
- As mentioned in the book, spruce is used as the material in this model.

Model Info: C:/ALGO_FEA_MODELS/0000_FREE_MODELS/Deflection of a beam/Run_CZ2/model.hn

Model Description

- Length 180 in
- Width 2 in
- Thickness 4 in
- Young's modulus 1300000 lb/in2
- Poison's ratio 0.3
- Density 0.018 lb/in3 (assumed)

2/21/2023

Model Parameters

Entity	Туре	FEA Entities	Туре
Solver	Altair Radioss	Analysis Type	Dynamic Explicit
Version	2021.2.1	Unit System	lb, in, s
Processors	2	Element Type	SHELL4N
Threads	2	Material Type	M1_ELAST
CPU	Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz	Property Type	P1_SHELL
Total run time	3.62 sec		

Analysis Setup

Units - in

Model Info: C:/ALGO_FEA_MODELS/0000_FREE_MODELS/Deflection of a beam/Run_CZ2/model.hm

Analysis Assumptions and Limitations

- Standard density value of spruce is assumed.
- The FEA analysis is performed dynamically since we are using the explicit Radioss solver.

Hand Calculations

Superposition of deflection by each load is assumed as the total deflection

 w_a – distributed load l_1 – length of the distributed load l_2 – overhanging length E – Young's modulus I – second moment of area W – point load Deflection by distributed load = $(-40)\frac{w_a l_1^3}{2AEI} = \frac{9800000}{E}$ Deflection by point load = $-\frac{Wl_2^3}{3EI} + (-40)\left[-\frac{1}{3}\frac{Wl_2l_1}{EI}\right] = -\frac{14400000}{E}$ $Total \ deflection = \frac{9800000}{F} - \frac{14400000}{F} = -\frac{4600000}{F} = 0.33 \ in \ (downward)$

2/21/2023

Analysis Results

Units - in

Contour Plot	1: model
Displacement(Mag)	Loadcase 1 : Time = 5.0000e+00 : Frame 6
Analysis system	
3.390E-01	
- 3.013E-01	
2.637E-01	
- 2.260E-01	
- 1.883E-01	
- 1.507E-01	
- 1.130E-01	
- 7.533E-02	
- 3.767E-02	
. 0.000E+00	
No Result	
Max = 3.390E-01	
Node 5040	
Min = 0.000E+00	
Node 5226	

Z

----- X

Conclusions

- Deflection analysis of a beam conducted using Altair Radioss based on the book listed in slide 2.
- Results of the simulation correlate well to the expected hand calculation value.

Deflection based on hand calculations – 0.33 in

Deflection from the simulation - 0.339 in

