Aluminum 2024-T4 Three Point Bending

For questions fill out contact form

Model Description

- 3-pt bending analysis based on experiments documented in the following paper:
 - M.Z. Xing, Y.G. Wang, Z.X. Jiang, "Dynamic fracture behaviors of selected aluminum alloys under threepoint bending", Def Technol, 9 (4) (2013), pp. 193-200
 - Dynamic Fracture Behaviors of Selected Aluminum Alloys Under <u>Three-point Bending – ScienceDirect</u>
- Analysis conducted for Aluminum 2024-T4 at 2.44 m/s impactor velocity
- Force response compared to test data documented in paper
- Note: This analysis does not model material failure.

Model Parameters

Entity	Туре	FEA Entities	Туре
Solver	Altair Radioss	Analysis Type	Dynamic Explicit
Version	2021.2.1	Unit System	Tonne, mm, sec
Processors	2	Element Type	Solid Type 24
Threads	2	Material Type	M1_ELAST (impactor, anvil)
CPU	Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz	Material Type	M36_PLAS_TAB (specimen)
		Contact Type	Type 25 – Multi type
Total run time	3 sec		impacting

Analysis Setup

Analysis Assumptions and Limitations

- According to paper, the crack was generated through fatigue loading of specimen. In this simulation the crack is modeled into the mesh directly based on the dimensions provided.
- The dimensions of the impactor are not provided in the paper and are thus assumed.
- This analysis does not evaluate crack propagation or failure. Further work would be needed to capture material failure.

2/21/2023

Analysis Results

6

Conclusions

- Three-point bending analysis conducted using Altair Radioss based on the paper listed in slide 2.
- The simulation shows good correlation in force response measured by the impactor when compared to test data presented in the paper. Note that the simulation results have not been filtered as such information was not available in the paper.
- This model provides a good starting point for 3-pt bending FEA and can be further utilized to model damage and failure. The user can also explore the effect of different contacts, element formulations, mesh size and material models.

