Stress Analysis of a Solid Homogeneous Circular Disc

Madhuka Dilshan

For questions, please fill out contact form

Model Description

- Stress Analysis of a Solid Homogeneous Circular Disc rotating about its own axis based on example question 7 documented in page 750 of the following book :
 - J. Souza, Roark's Formulas For Stress And Strain-.pdf. Accessed: Nov. 06, 2022. [Online]. Available: <u>https://www.academia.edu/37205286/Roarks_Formulas_Formulas_Formulas_Formulas_Formulas_Formulas_Formulas_Formulas_Formulas_Formulas_Formulas_Formulas_Formulas_Formulas_For_Stress_And_Strain_pdf
 </u>
- Steel is selected as the material for the disc.

1/11/2023

Model Description

Diameter – 100 mm

Thickness – 14 mm

Young's modulus – 206.8427184 GPa

Poison's ratio – 0.285

Model Parameters

Entity	Туре	FEA Entities
Solver	Altair Radioss	Analysis Typ
Version	2022.1	Unit System
Processors	2	Element Typ
Threads	2	Material Typ
CPU	Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz	Property Ty
Total run time	5.93 sec	

FEA Entities	Туре
Analysis Type	Dynamic Explicit
Unit System	Kg, mm, ms
Element Type	BRICK
Material Type	M1_ELAST
Property Type	P14_SOLID

Analysis Setup

Analysis Assumptions and Limitations

• Standard material properties of steel is assumed.

Hand Calculations

R – Radius of the disc

 σ_r – Radial Stress

 $\nu - Poisson's Ratio \qquad \delta - \sigma_t - Tangential Stress$

$$\delta$$
 – Density

$$(\sigma_r)_{max} = (\sigma_t)_{max} = \frac{\rho \omega^2 (3 + \nu) R^2}{8}$$
$$= \frac{7.85 * 10^{-6} * (0.01)^2 * (3 + 0.285) * 50^2}{8}$$
$$= 8.0585 * 10^{-7} kgmm^{-1}ms^{-2}$$

Analysis Results – Stresses

х

Analysis Results

• Maximum Radial and Tangential inertial stress occur at the center of the disc, Based on hand calculations $-8.06 \times 10^{-7} kgmm^{-1}ms^{-2}$ From the simulation $-8.65 \times 10^{-7} kgmm^{-1}ms^{-2}$

• Error percentage =
$$\frac{(8.06 * 10^{-7} - 8.65 * 10^{-7})}{8.06 * 10^{-7}} * 100\%$$
$$= 7.34\%$$

Conclusions

- Stress analysis of a homogeneous circular disc conducted using Altair Radioss based on the book listed in slide 2.
- Results of the simulation correlate well to the expected hand calculation value.

