Deflection and Stress analysis of a Circular plate

Sanka Dasanayaka

For questions, please fill out contact form

Model Description

- Deflection and stress analysis of a circular plate based on example question 1 documented in page 429 of the following book:
 - J. Souza, Roark's Formulas For Stress And Strain-.pdf.
 Accessed: Nov. 06, 2022. [Online]. Available:

 https://www.academia.edu/37205286/Roarks Formulas For Stress And Strain pdf
- As mentioned in the book, plate is steel

Model Description

Model Info: C:/ALGO FEA MODELS/0000 FREE MODELS/Circular plate/Run 3/CP model.hm

Diameter - 20 in (508 mm)

Thickness - 0.2 in (5.08 mm)

Young's modulus - 30000000 lb/in2

(206.8427184 GPa)

Poison's ratio - 0.285

Model Parameters

Entity	Type
Solver	Altair Radioss
Version	2021.2.1
Processors	2
Threads	2
CPU	Intel(R) Core(TM) i7- 9750H CPU @ 2.60GHz
Total run time	1 sec

FEA Entities	Type
Analysis Type	Dynamic Explicit
Unit System	Kg, mm, ms
Element Type	SHELL4N
Material Type	M1_ELAST
Property Type	P1_SHELL

Analysis Setup

Model Info: C:/ALGO_FEA_MODELS/0000_FREE_MODELS/Circular plate/Run 3/CP_model.hm*

Analysis Assumptions and Limitations

- Standard density value of steel is assumed.
- Distributed load is assumed as a pressure load.

Hand Calculations

D – Plate constant E-Young's modulus v-Poisson's ratio t-thickness q-load per unit area $r_o-start$ of a distributed load a-outer radius

$$D = \frac{Et^3}{12(1-v^2)} = 218000 \quad then, q = 3 \quad r_o = 10$$

Center deflection =
$$\frac{qa^4(5+v)}{64D(1+v)} = 0.0833 in$$

Maximum bending moment(M) =
$$\frac{qa^3}{16}(3 + v) = 61.5 lb - in/in$$

$$Maximum stress = \frac{6M}{t^2} = 9240 \ lb/in^2$$

Analysis Results - Center Deflection

Units - mm

1: CP model Loadcase 1: Time = 1.0000e+03: Frame 101

Analysis Results - Maximum Stress

Units - GPa

SHELL 4

1: CP_model Loadcase 1 : Time = 1.0000e+03 : Frame 101

Analysis Results

Center Deflection,

Based on hand calculations - 0.0833 in (2.1158 mm)

From the simulation - 0.0839 in (2.132 mm)

Maximum Stress,

Based on hand calculations - 9240 lb/in2 (63.708 MPa)

From the simulation - 9260.66 lb/in2 (63.85 MPa)

Conclusions

- Deflection analysis of a circular plate conducted using Altair Radioss based on the book listed in slide 2.
- Results of the simulation correlate well to the expected hand calculation value.

