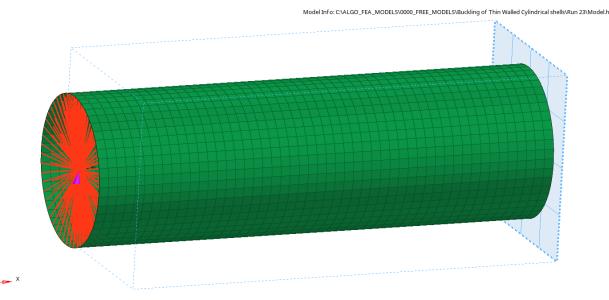
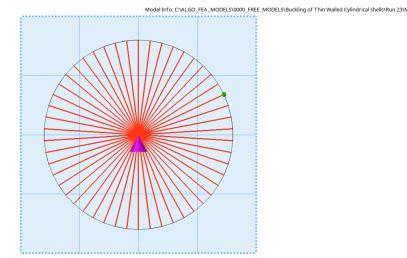
Buckling of Thin-Walled Cylindrical Shells

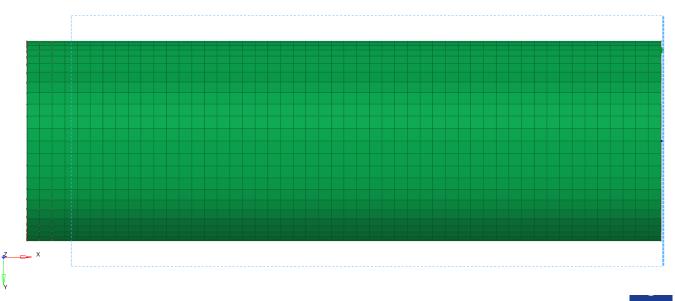

Sanka Dasanayaka

For questions, please fill out contact form

Model Description

- Buckling analysis of a Thin-Walled Cylindrical Shell is based on experiments documented in the following paper:
 - Walther, H.P. et al. (2007) An experimental study of buckling of cylindrical shells subjected to static and dynamic axial impact., AN EXPERIMENTAL STUDY OF BUCKLING OF CYLINDRICAL SHELLS SUBJECTED TO STATIC AND DYNAMIC AXIAL IMPACT. (Conference) | OSTI.GOV. Available at: https://www.osti.gov/biblio/1147537 (Accessed: October 19, 2022).
- Out of all the cases mentioned in the paper, A cylindrical shell of Aluminum AMc under static loading was chosen.




Model Description ccn+

Dimensions and Material

- Diameter 100 mm
- Length 300 mm
- Thickness 5 mm
- The stress-strain curve of the material v digitized from the paper and used for tl analysis

Model Info: C:\ALGO_FEA_MODELS\0000_FREE_MODELS\Buckling of Thin Walled Cylindrical shells\Run 23\Model.hm*

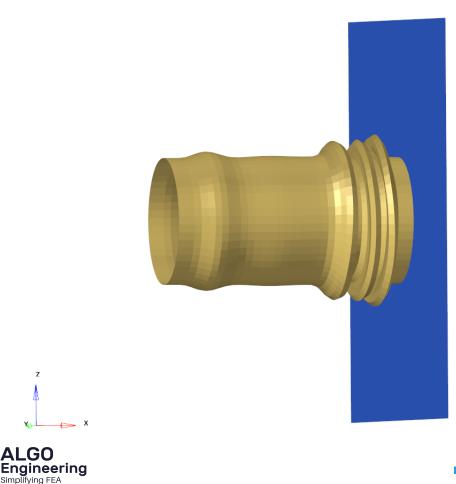
Model Parameters

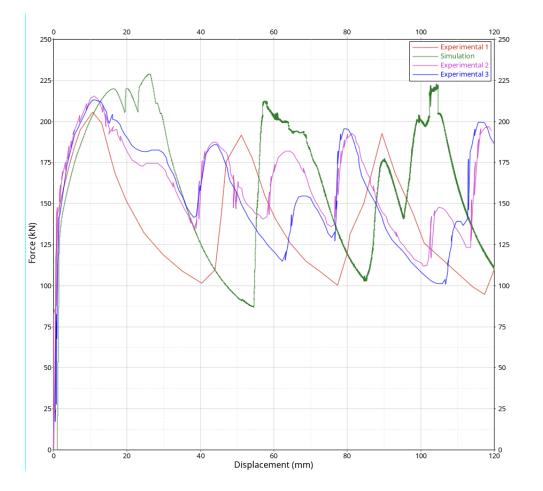
Entity	Туре	FEA Entities	Туре
Solver	Altair Radioss	Analysis Type	Dynamic Explicit
Version	2021.2.1	Unit System	Kg, mm, ms
Processors	2	Element Type	SHELL4N (Cylinder)
Threads	2	Element Type	RBODY (Rigid Body)
CPU	Intel(R) Core(TM) i7- 9750H CPU @ 2.60GHz	Material Type	M36_PLAS_TAB (Cylinder)
Total run time	1200 sec	Property Type	P1_SHELL (Cylinder)

12/30/2022

Analysis Setup

Model Info: C:\ALGO_FEA_MODELS\0000_FREE_MODELS\Buckling of Thin Walled Cylindrical shells\Run 23\Model.hm*


Analysis Assumptions and Limitations


- Test setup is simplified to a cylinder with shell elements and a rigid wall to reduce the run time and complexity.
- Static loading velocity is increased to 0.1 m/s to reduce the run time.
- The friction coefficient between the rigid wall and the cylinder is assumed as 0.9.
- Density and the Poison's ratio are not provided and thus assumed.
- Fiction coefficient between cylindrical shells itself is not provided in the paper and is thus assumed as 0.1.

12/30/2022

Analysis Results

7

Conclusions

- Buckling of thin-walled cylindrical shells conducted using Altair Radioss based on the paper listed in slide 2.
- Results of the simulation:
 - The load magnitudes compare well with test data
 - Load oscillation cycles vary, and this can be attributed to the simplifications and assumptions of the FEA model
 - Note that there is a difference even between the three experiments
- This model provides a good start to analysis of buckling of thinwalled cylindrical shells.

