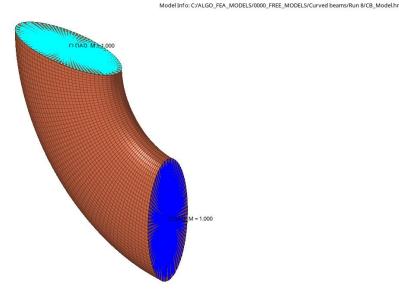
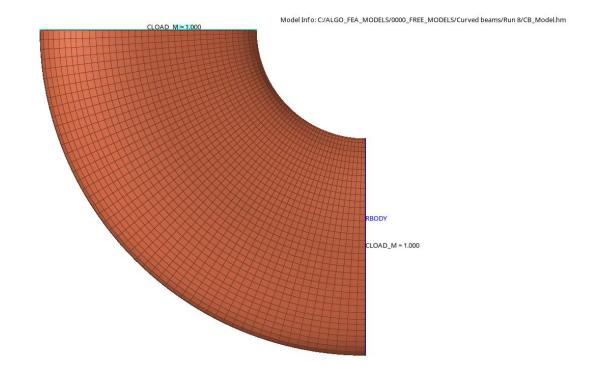
Bending of a Curved Beam

Sanka Dasanayaka


For questions, please fill out contact form

Model Description

- Bending analysis of a curved beam based on example question 1 documented in page 272 of the following book:
 - J. Souza, Roark's Formulas For Stress And Strain-.pdf.
 Accessed: Nov. 06, 2022. [Online]. Available:
 https://www.academia.edu/37205286/Roarks Formulas For Stress And Strain pdf

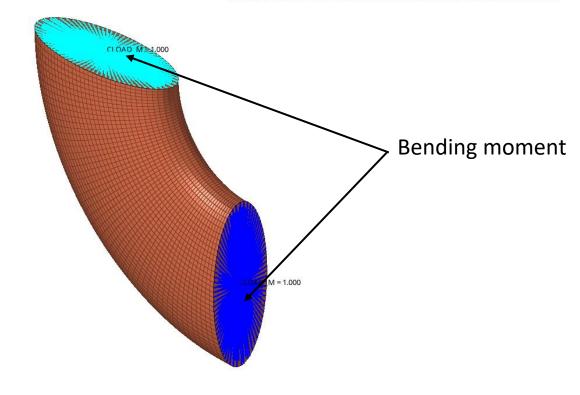

Model Description

Young's modulus – 206.8427184 GPa

Density - 7850 kg/m3

Poison's ratio – 0.3

Model Parameters


Entity	Туре
Solver	Altair Radioss
Version	2021.2.1
Processors	2
Threads	2
CPU	Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz
Total run time	0.1 sec

FEA Entities	Туре
Analysis Type	Dynamic Explicit
Unit System	kg, mm, ms
Element Type	HEXA8N
Material Type	M1_ELAST
Property Type	P14_SOLID

Analysis Setup

Model Info: C:/ALGO_FEA_MODELS/0000_FREE_MODELS/Curved beams/Run 8/CB_Model.hm

Analysis Assumptions and Limitations

- Angle of curvature of the beam was not mentioned in the question and is thus assumed as 90deg.
- Material of the beam was also not mentioned in the question and is thus assumed as steel.

Hand Calculations

R-Radius of curvature measured to centroid of section

c — distance from centroidal axis to extreme fiber on concave side of beam

A - Area of section

e – distance from centroidal axis to neutral axis measured toward center of curvature

M-moment

$$R = 100 \text{ mm}, c = 50 \text{ mm}, b = 40 \text{ mm}$$

 $A = \pi c \frac{b}{2} = 3142 \text{ mm}^4$

$$\frac{e}{c} = \frac{R}{c} - \frac{2}{\ln\left(\frac{R}{c} + 1\right)} = 0.1340$$

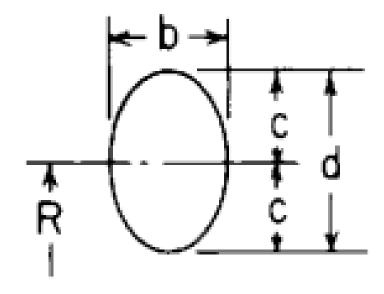
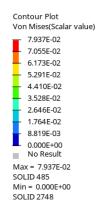


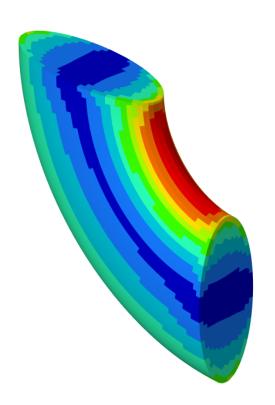
Figure – from above book

Hand Calculations

$$r_n = R - e = 93.3 \ mm$$


Therefore,

$$\sigma_{max} = \frac{M(r_n - c)}{Aec} = 82.3 N/mm^2$$



Analysis Results

Units – GPa

1: CB_Model Loadcase 1 : Time = 1.0000e+02 : Frame 101

Analysis Results

Maximum stress,

Based on hand calculations – 82.3 N/mm2

From the simulation – 79.37 N/mm2

Conclusions

- Bending analysis of a curved beam conducted using Altair Radioss based on the book listed in slide 2.
- Results of the simulation correlate well to the expected hand calculation value.

