Aircraft Spar Beam Torsion

Sanka Dasanayaka

For questions, please fill out contact form

Model Description

- Torsion analysis of a spar beam based on example question 2 documented in page 385 of the following book:
 - J. Souza, Roark's Formulas For Stress And Strain-.pdf.
 Accessed: Nov. 06, 2022. [Online]. Available:
 https://www.academia.edu/37205286/Roarks Formulas For Stress And Strain pdf
- As mentioned in the book, spar beam is made out of spruce wood.

Model Description

Length – 8 ft

Young's modulus – 1500000 lb/in2

Modulus of rigidity – 100000 lb/in2

Poison's ratio - 0.38

Model Parameters

Entity	Туре
Solver	Altair Radioss
Version	2021.2.1
Processors	2
Threads	2
CPU	Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz
Total run time	1 sec

FEA Entities	Туре
Analysis Type	Dynamic Explicit
Unit System	lb, in, s
Element Type	HEXA8N
Material Type	M1_ELAST
Property Type	P14_SOLID

Analysis Setup

Model Info: C:/ALGO_FEA_MODELS/0000_FREE_MODELS/Aircraft spar beam torsion/Run 1/AT_Model.hm

Analysis Assumptions and Limitations

• Standard density value and standard Poisson's ratio of spruce is assumed.

Hand Calculations

K – *Length to the fourth function of cross section*

- $-Young's modulus \quad v-Poisson's ratio \qquad T-torque$
- length G- modulus of Rigidity A- Area of the section

$$K = 2K_1 + K_2 + 2\alpha D^4$$

$$K_1 = ab^3 \left[\frac{1}{3} - 0.21 \frac{b}{a} \left(1 - \frac{b^4}{12a^4} \right) \right] = 0.796 in^4$$

$$K_2 = \frac{1}{3}cd^3 = 0.104 in^4$$

$$K_2 = \frac{1}{3}cd^3 = 0.104 in^4$$

$$\alpha = \frac{t}{t_1} \left(0.15 + 0.1 \frac{r}{b} \right) = 0.1133$$

Figure – from above book

Hand Calculations

Here, $t_1 = d$

$$\theta = \frac{Tl}{KG} = 0.168 \, rad$$

$$\tau_{max} = \frac{T}{K}C$$

Where,

$$C = \frac{D}{1 + \frac{\pi^2 D^4}{16A^2}} \left[1 + 0.15 \left(\frac{\pi^2 D^4}{16A^2} - \frac{D}{2r} \right) \right] = 1.73 \text{ in}$$

Therefore,

$$\tau_{max} = 303 \ lb/in^2$$

Analysis Results

Units – lb/in2

Analysis Results

Maximum stress,

Based on hand calculations – 303 ln/in2

From the simulation – 304.2 lb/in2

Conclusions

- Torsion analysis of a spar beam conducted using Altair Radioss based on the book listed in slide 2.
- Results of the simulation correlate well to the expected hand calculation value.

